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1 Subject

These lectures are concerned with the discretization of boundary value and inter-
face problems by adaptive finite element methods. They are motivated by applica-
tions in solid and fluid mechanics, which provide a variety of different boundary
conditions, either because of physical modeling or the need to limit the computa-
tional domain. In addition, many problems involve different physical materials,
which lead to coupling of different partial differential equations by interface prob-
lems.

The mathematical theory of finite elements is mostly concerned with approx-
imation properties, stability and error analysis, limiting the considered models
to the simplest boundary conditions and generally excluding multi-physical cou-
plings. Therefore, a standard first course on the mathematical theory of finite ele-
ments generally focusses on elliptic problems with homogenous Dirichlet data.

In recent time, considerable research has been made to develop numerical
methods for multi-physics with an without meshes matching at the interfaces;
naturally, non-matching meshes are at least interesting for problems with a priori
unknown position of interfaces or dynamically moving interfaces.

These notes focus on finite element methods based on weak treatment of in-
terface couplings. This can in principle be achieved by means of Lagrange multi-
pliers. At least from a computational point of view, methods avoiding multipliers
are preferable, since they avoid discretization of the multiplier spaces and do not
require additional work for iterative solution of the resulting systems.
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An important additional property of weak coupling is the possibility of weight-
ing contributions from different partial differential operators involved in the sys-
tem. Thereby it is possible to establish a discrete weak formulation which makes
sense for the limit of a singularly perturbed problem, such as the convection-
diffusion problem with vanishing viscosity parameter.

In 1971 Joachim Nitsche introduced [1] his method for the Poisson problem
with non-homogenous Dirichlet conditions that avoids modification of the finite
element spaces. Using the underlying idea in order to couple completely discon-
tinuous finite element spaces on a cell-wise level goes back to [2] (and for the
biharmonic problem to [3]). This led to the nowadays very popular discontinu-
ous Galerkin finite element method [4, 5, 6, 7]. Another remarkable application
of Nitsche’s basic idea is the unfitted (or cut-) finite element method for interface
problems [8], which turns out to be closely related to XFEM [9].

2 Plan of lectures

1. Nitsche’s method

(a) Elliptic problems

i. Different finite element spaces
ii. Nitsche’s method, relation to multipliers

iii. Elasiticty, Stokes

(b) Hyperbolic problems

(c) Contact problems

2. Interface problems

(a) From domain decomposition to implicit interfaces

(b) The elliptic interface problem : unfitted FEM an other methods

(c) Tow-body contact

3. Adaptivity

(a) Review of convergence theory

(b) Residual estimators and flux recovery

2



References
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bei Verwendung von Teilräumen, die keinen Randbedingungen unterwor-
fen sind”. In: Abh. Math. Univ. Hamburg 36 (1971), pp. 9–15.

[2] D. Arnold. “An interior penalty finite element method with discontinuous
elements”. In: SIAM J. Numer. Anal. 19 (1982), pp. 742–760.

[3] G. Baker. “Finite element methods for elliptic equations using nonconform-
ing elements”. In: Math. Comp. 31 (1977), pp. 45–59.

[4] B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equa-
tions. Vol. 35. Frontiers in Applied Mathematics. Theory and implementation.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2008, pp. xxii+190. ISBN: 978-0-898716-56-6. URL: https://doi.org/10.
1137/1.9780898717440.

[5] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods. Vol. 54.
Texts in Applied Mathematics. Algorithms, analysis, and applications. Springer,
New York, 2008, pp. xiv+500. ISBN: 978-0-387-72065-4. URL: https://doi.
org/10.1007/978-0-387-72067-8.
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